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Abstract
The use of multivariate measurements to characterize brain activity (electrical, magnetic,
optical) is widespread. The most common approaches to reduce the complexity of such
observations include principal and independent component analyses (PCA and ICA), which
are not well suited for discrimination tasks. We addressed two questions: first, how do the
neurophysiological responses to elongated phonemes relate to tone and phoneme responses in
normal children, and, second, how discriminable are these responses. We employed fully
optimized linear discrimination analysis to maximally separate the multi-electrode responses
to tones and phonemes, and classified the response to elongated phonemes. We find that
discrimination between tones and phonemes is dependent upon responses from associative
regions of the brain apparently distinct from the primary sensory cortices typically emphasized
by PCA or ICA, and that the neuronal correlates corresponding to elongated phonemes are
highly variable in normal children (about half respond with neural correlates of tones and half
as phonemes). Our approach is made feasible by the increase in computational power of
ordinary personal computers and has significant advantages for a wide range of neuronal
imaging modalities.

Introduction

The use of multivariate measurements to characterize brain
activity (electrical, magnetic, optical) is now widespread.
The most common approaches to reduce the complexity of
such observations often include principal component analysis
(PCA) (Pearson 1901, Hotelling 1931, Flury 1997) and, more
recently, independent component analysis (ICA) (Bell and
Sejnowski 1995, Hyvarinen and Oja 1997). These methods
are designed for separating orthogonal (PCA) or statistically
independent (ICA) components within multivariate data.

Nevertheless, such approaches may not be well suited for
certain classification tasks. Such failures might be expected to
be found when the neural components generating the largest
correlated signals are not, but smaller dependent combinations
of signals are, the neuronal components critical for perceptual
discrimination.

Linear discrimination analysis (LDA) was described by
Fisher (1936) to separate species based on morphometric
measurements. Fisher worked out the fundamental
mathematics required to incorporate more than one variable
(measurement) in each data sample (multivariate) and to admit
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more than two groups in the analysis. Once a data set
whose group memberships are known have been used as a
training set for LDA, one can examine unknown samples
and perform classification. Classification literally involves
determining in which group is a sample most likely to be a
member. In its more modern implementation (Schiff et al
2005), discrimination quality is determined by relying on
normal distributional assumptions and covariance constraints
which are rarely present in neurophysiological data. As
computational power increases, it is now possible to fully
optimize such discrimination analysis by, for instance, testing
all combinations of electrodes to see which are best at
discriminating responses. We will here apply such fully
optimized analysis to an important problem in the cognitive
physiology of dyslexia—the use of modified phonemes to
retrain children with language impairments.

The neural circuitry that the brain employs to processes
tones and phonemes is asymmetric. In normal right-handed
individuals, the perception of language phonemes is associated
with neural correlates in the left temporoparietal region,
while pitch discrimination is biased to right frontotemporal
structures (Kayser et al 1998). Phoneme discrimination
selective to native language may form early during childhood
(Kuhl 2000), and by adulthood, native phoneme selectivity has
asymmetrically left-sided temporoparietal neural correlates
(Naatanen et al 1997).

It has been proposed that the origin of dyslexia in
certain children may be caused by deficits associated with
phoneme discrimination. Tallal et al (1996) suggested that
3–6% of children are language learning impaired (LLI) due
to phonological deficits in the rapid processing of speech.
This deficit would lead to an inaccurate perception of fast
components of speech, such as short or ‘stop’ consonants ‘b’
or ‘d’ in phonemes ‘ba’ versus ‘da’ in English (Tallal 1980).

Mismatch negativity (MMN), first described in Naatanen
et al (1978), is the difference between the late event-related
potential (ERP) amplitude detected with an occasionally
presented stimulus (target, infrequent event) and the response
amplitude to a commonly presented stimulus (non-target,
frequent event). Kraus et al (1996) showed that the MMN
associated with /da/-/ga/ auditory oddball experiments is
decreased in language learning disabled children with normal
intelligence.

It has been reported that children with LLI can
show significant improvements in phoneme discrimination
following training (Merzenich et al 1996, Tallal et al 1996)
using software which elongates and emphasizes the fast
transitions in speech (Fast ForWord (FF) Scientific Learning
Corp., Berkeley). Despite the widespread use of such language
training, we know little about the physiology of elongated
phoneme perception. Although one might suppose that an
individual with a deficit in processing fast components of
speech might perceive elongated phonemes as ‘phonemes’,
these computer synthesized sounds differ substantially from
normal language components.

To learn more about the comparative physiology of
tones, phonemes and elongated phonemes, we conducted
measurements of mismatch negativity for these stimuli

incorporating phonemes actually employed in FF training
software (with permission of Scientific Learning Corp.).
We specifically addressed two questions: first, how do the
neurophysiological responses to elongated phonemes relate to
tone and phoneme responses in normal children and, second,
how discriminable are these responses. Our supposition
was that the artificial nature of elongated phonemes might
contribute to highly variable responses, with some subjects
perceiving them as tones and others as language phonemes. If
this were so, then perhaps the difference in response would be
related to the efficacy of training, and the use of a physiological
screening test might be predictive of training effectiveness.

Previous attempts to contrast tone and phoneme responses
have used techniques such as PCA to establish significant
hemispheric asymmetries in ERP responses (Kayser et al
1998). We here employ LDA (Fisher 1936) to maximally
separate the multi-electrode responses to tones and phonemes
and then use this discrimination to classify the response to
elongated phonemes.

In a recent study, using a different algorithmic strategy, a
sub-exhaustive search of sensor pairs was employed in order to
discriminate magnetoencephalography correlations reflective
of a variety of disease states (Georgopoulos et al 2007). To our
knowledge, no one has employed fully optimized strategies to
apply LDA to such problems. With exhaustive searching,
we find that discrimination between tones and phonemes
best relies upon responses from electrodes over associative
regions of the brain apparently distinct from the primary
sensory cortices typically selected by PCA or ICA, and that
the neuronal correlates corresponding to elongated phonemes
are highly variable in normal children (about half respond
with neural correlates of tones and half as phonemes). Our
fully optimized approach is one made feasible in recent years
by the increase in computational power of ordinary personal
computers and has significant applicability for a range of
neuronal imaging modalities.

Methods

Subjects

Thirty-four child volunteers 11–13 years old were recruited
for the study from public schools located in a suburban area of
Washington, DC. All children were psychometrically tested
for IQ, phonemic awareness, receptive language and basic
reading skills. Eighteen right-handed (Edinburgh inventory)
children (ten females), having all standardized psychometric
clustered or total scores above 84, were selected for further
investigation. Subjects were paid 20 $US per visit. This
protocol was approved by the Institutional Review Board of
George Mason University.

Experimental procedures

Following parental informed consent and assent, subjects had
a 32-channel EEG cap applied (Neuroscan Inc.), including two
bipolar (vertical and horizontal) extraocular electrodes as well
as linked ear lobe references. Conductive gel (Quick-Gel,
Neuroscan Inc.) was inserted beneath each electrode, and
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Figure 1. Stimuli used in oddball tasks:. (A) Tones, (B) phonemes and (C) elongated phonemes. The RMS power was adjusted so that it
was equal for all stimuli (see the methods section). Differences are ADA-ABA, where v and c indicate vowel and consonant, respectively.

gentle abrasion used to obtain impedances below 10 k�. EEG
signals were amplified 1000 times (Neuroscan amplifiers),
bandpass filtered between 0.1 and 200 Hz, and digitized at
1000 Hz.

Matched earphones, calibrated for loudness, were inserted
into the auditory canals. A screening test was performed for
normal auditory acuity defined as pure-tone threshold <25 dB
sound pressure level for frequencies of 500 and 1000 Hz
(Bellis et al 2000). Possible ocular and muscular artifacts were
demonstrated to the subject by showing the effects on real time
EEG. EEG caps were disinfected with 2.5% glutaraldehyde
solution between uses.

Protocol

An active attention (motor response required) tonal oddball
experiment employing 440 Hz and 880 Hz tones was
presented using 300 ms duration stimuli. Hanning windowing
with 5 ms rise/fall was applied to the stimuli. A total of
200 presentations, with 20% randomly interspersed deviant
target stimuli, were presented followed by another block of
200 presentations where the targets and non-target frequencies
were reversed. In each block, the subject was told to press a
button when hearing a deviant stimulus with the right-hand
index finger for the first 100 presentations, and after a short
break, respond to the target with the left-hand index finger.
Interstimulus interval was randomly jittered between 1.8 and
2.2 s. The duration and the average loudness root mean square
(RMS) of the tones, phonemes and elongated phonemes were
set to be equal (MatlabTM was used for signal processing).
This was achieved by calculating RMS of all stimuli and then

multiplying the waveforms of each stimulus by the ratio of
RMS of one of the stimuli (we chose elongated ABA) to the
RMS of the stimulus being adjusted. We show in figure 1
examples of the tones, normal phonemic, and elongated
phonemic stimuli, as well as difference plots to illustrate the
differences between the normal and elongated phonemes. The
difference plots show the differing lengths of the initial vowel
in normal and elongated phonemic stimuli, which were used
to set the varying intervals to start the mismatch negativity
averaging below—it is only the differing consonants which
create the ‘oddball’ perception we seek.

Normal phoneme oddball presentation of /aba/ and /ada/
was performed in a similar manner to the tonal oddballs.
Phonemic stimuli were matched for duration, and again an
active balanced design with two blocks of 200 presentations
(100 for each hand), using 20% targets with the targets
counterbalanced between the two blocks, was employed as
above.

Elongated phoneme oddball presentation of /aba/ and
/ada/ was performed using actual elongated /aba/ and /ada/
from FF software, adjusted for RMS, with the identical
protocol procedures used for normal phoneme oddball task.

Data reduction

Epochs were defined as segments of EEG 200 ms before and
823 ms after the stimulus onset, so the total epoch length was
1024 ms. Epochs were subject to artifact rejection (if any
electrode exceeded ±75 µV), band-pass filtered from 1 Hz
(−24 dB/oct) to 30 Hz (−24 dB/oct) and mean baseline
adjustment performed to zero the prestimulus mean.
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Figure 2. Difference wave grand averages for tones, phonemes and elongated phonemes from all subjects. We aligned all recordings to start
at 0 ms which was the onset time of each 300 ms stimuli. Each plot corresponds to the geometric alignment of the 10–20 nomenclature for
the 30 EEG electrodes (F, FT, T, TP, P, FC, C, CP, O, FZ, FCZ, CZ, CPZ, PZ, OZ), along with horizontal extraoculogram electrodes (HEOG)
and vertical extraoculogram electrodes (VEOG). Grand averages from all subjects for all similar trials are given for tones (dark lines),
phonemes (dotted lines) and elongated phonemes (gray lines).

After the above-mentioned procedures, we calculated
average waveforms separately for the targets and the non-
targets. We then subtracted non-target averages from target
averages, creating difference waves for each electrode and
each subject. A plot of the grand average difference waves for
all subjects is shown in figure 2.

MMN magnitude for each subject was determined as
average voltage difference in the window from 180 to 280 ms
after stimulus onset for tones. Since normal phonemic stimuli
start with the vowel ‘a’, whose duration is about 100 ms, the
neural discrimination processes cannot begin before 100 ms
after the stimulus onset. Elongated phonemes start with
a short, approximately 50 ms, ‘a’ at the beginning of the
stimulus. Therefore the MMN window for normal and
elongated phonemes was shifted by 100 ms and 50 ms,
respectively, yielding windows for MMN between 280–380
for normal and 230–330 for elongated phonemes (figure 1).

Analysis of variance was performed in order to identify
laterality of responses for tones, phonemes and elongated

phonemes. PCA was implemented using a singular value
decomposition procedure (Golub and Loan Van 1996, Flury
1997). For ICA we employed FastICA (Hyvärinen and Oja
2000).

In classification analysis, one can ask whether an unknown
sample (elongated phonemes) is closer in multivariate
characteristics to well-defined groups (tones or phonemes).
In this study we use linear discrimination analysis.

Discrimination methods

Linear discrimination analysis (LDA) creates a linear
combination of variables (electrode data) that maximally
separate the standard distance between two sets of
measurements (see the appendix). A complete discussion of
the theory of LDA can be found in Flury (1997), and a set
of efficient matrix algorithms for the LDA implementation
we employed can be found in the code archived in the
supplementary material from Schiff et al (2005).
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LDA does not provide, in general, a means of determining
which variables are more important for the classification.
Although it is possible to calculate the significance of each
variable using normal theory, this calculation requires data
assumptions such as normality and equality of the covariance
matrices, which may not apply to our data (Flury 1997).
Because these assumptions may not accurately estimate the
significance of variables in our data set, another approach was
pursued.

We chose to calculate all possible combinations of
variables and ascertain which variables (electrodes) are
optimal for the classification. This procedure may also be
viewed as a search for a projection, where the observations
of the two groups are maximally separated in terms of the
standard distance as defined in Flury (1997).

The optimal classifier (projection) was found by
optimizing two types of error rates: plug-in and leave-one-out.
The plug-in error rate is defined as a fraction of misclassified
observations from the training set based on the classification
constructed from all the samples in the training set. In other
words, the same observations are used to create and test the
classifier. The leave-one-out error rate is calculated by leaving
out one observation, constructing the classifier and then testing
the classification of the omitted observation. The procedure is
repeated for all observations in the data set. Thus, the leave-
one-out error rate is defined as the fraction of observations that
would be misclassified omitting each observation in turn.

Results

Electroencephalographical MMN data were collected during
an oddball experiment with tones, phonemes and elongated
phonemes as described in the methods section.

Before calculating the discriminant functions it is useful
to confirm that there is a statistically significant difference
between the two groups. We found that the significance of
MANOVA analysis using 36 observations (averaged MMN
amplitude in a window) from 18 subjects with stimulus as a
factor (two levels: tones, phonemes) varied as a function of the
number of electrodes used. With all 25 electrodes as dependent
variables, the difference was marginal (F = 2.29; df = 25, 10;
p = 0.085), whereas with a more optimal number of electrodes
(13 electrodes), the differences were highly significant (F =
3.97; df = 13, 22; p = 0.002).

We further investigated the physiological asymmetry in
the responses to tones, phonemes and elongated phonemes.
All 18 subjects completed the initial tones and phonemes
protocol, and 8 of 18 completed the elongated phoneme
protocol. We used repeated measures ANOVA with two
factors: side and electrode. We indexed each electrode
on one side with the corresponding electrode on the other
side. Midline electrodes were excluded from this asymmetry
analysis similarly to Kayser et al (1998). Our results were
analogous to the results reported earlier by Kayser et al (1998).
The responses were asymmetric, with responses to tones more
negative in electrodes located on the right and with responses
to phonemes more negative in electrodes located on the left.
Interestingly, there was no significant asymmetry in responses
to elongated phonemes.

We then investigated the optimal number of electrodes for
classifications. For n electrodes, there are

∑n
k=1

n!
k!(n−k)! =

2n − 1 unique combinations. Therefore we studied 225 − 1 =
33 554 431 combinations of 25 electrodes. For each
combination we calculated linear discriminator functions
and computed plug-in error and leave-one-out error rates
as described in the methods section. In order to compute
leave-one-out error for a particular combination it was
necessary to calculate 36 discriminators (tones and phonemes
for 18 subjects), for a total of (36 + 1) × 33 554 431 =
1241 513 947 discriminators. Using two laboratory grade
personal computers, these calculations were completed in
about 3 weeks (about 650 h of processor time).

Only a few combinations of electrodes yielded the best
classification. An example of optimization for 9 out of
25 electrodes is shown in figure 3. In this figure, the vertical
axis represents leave-one-out error and the horizontal axis
plug-in error. Each point corresponds to the number of errors
from different combination of electrodes. Note that since some
combinations produced exactly the same errors, some points
represent multiple combinations. Only one combination out
of 2042 975 gives the optimal classification with two plug-in
errors and three leave-one-out errors. The results for all
combinations of electrodes are presented in table 1. The
optimal leave-one-out errors are higher than the plug-in errors
as would be expected. The utility of employing both leave-
one-out and plug-in errors for optimization is illustrated in
the results of figure 3—there were four combinations with
three leave-one-out errors, of which three had three plug-in
errors and one, the optimum combination, had two plug-in
errors.

Discrimination between tone and phoneme observation
is not feasible using only one electrode. Using any one
electrode, the LDA yielded the leave-one-out error rate of
12 observations (33%). The minimum leave-one-out error rate
using two electrodes dropped to eight observations (22%).

In table 1, we also summarize the classification of
elongated phonemes. The average number of elongated
phoneme observations classified as tones is three versus five
classified as phonemes. Normal subjects have no clear
propensity to process elongated phonemes as either tones or
phonemes. An example of creating a classifier from an optimal
combination of 13 electrodes between tones and phonemes is
shown in figure 4. In figure 4(A), selected electrodes are
shown as solid squares and unselected electrodes are shown as
hatched squares. The magnitude of the coefficients from the
linear combination for each selected electrode is coded in the
gray scale. We used this classifier to assign group membership
(tones, phonemes) to the data obtained in response to elongated
phonemes. The results indicate that four out of eight elongated
phoneme results were classified as tones (figure 4(B)). Note
that the optimal electrodes are scattered spatially over the
scalp. The electrodes that are important for classification are
not constrained to lie directly above the auditory cortices,
but include strong contributions from frontal and parietal
association areas.

In order to further assess the statistical validity of the
linear discrimination we randomized the assignment of tone
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Figure 3. Example of optimization of plug-in and leave-one-out errors for 9 out of 25 electrodes. We plot all plug-in and leave-one-out
error rates as open circles. There are many overlapping combinations of error rates. But there is only one combination, indicated by a star,
which gives the minimum combined error rates of 3 leave-one-out errors and 2 plug-in errors.

Table 1. Results of search for optimal electrodes. For a given number of electrodes sampled (column 1), we give the total number of all
unique combinations of electrodes (column 2), the resulting optimal plug-in and leave-one-out errors (columns 3 and 4), the number of
optimal combinations (column 5), the average number of elongated phonemes misclassified as tones (column 6) and the average number of
phonemes misclassified as phonemes (column 7). On the bottom row, we give the average number of misclassifications for all electrode
combinations.

Optimal Optimal Number of Average elongated Average elongated
Number of Number of plug-in leave-one-out optimal phonemes classified phonemes classified
electrodes combinations error error combinations as tones as phonemes

1 25 12 12 1 3 5
2 300 6 8 1 2 6
3 2 300 5 6 1 2 6
4 12 650 4 4 1 1 7
5 53 130 2 4 1 1 7
6 177 100 2 4 2 2 6
7 480 700 2 3 5 1.8 6.2
8 1081 575 2 3 4 2 6
9 2042 975 2 3 1 2 6

10 3268 760 3 3 2 1 7
11 4457 400 3 3 1 1 7
12 5200 300 4 4 1 2 6
13 5200 300 2 4 1 4 4
14 4457 400 2 4 1 4 4
15 3268 760 2 5 2 4 4
16 2042 975 0 6 6 4 4
17 1081 575 0 6 3 4 4
18 480 700 0 7 3 3.67 4.33
19 177 100 0 8 3 4.67 3.33
20 53 130 1 8 1 4 4
21 12 650 1 9 1 4 4
22 2 300 0 10 3 4.67 3.33
23 300 1 10 1 4 4
24 25 1 11 1 4 4
25 1 0 13 1 5 3

Average 3.0 5.0
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Figure 5. Results of the data set bootstrap randomization for
13 electrodes to further assess the validity of the LDA.

versus phoneme for each observation consisting of electrodes
and repeated the search for the optimal combination of 13 out
25 electrodes. The randomization procedure was repeated
100 times (figure 5). Most randomizations of the data set
resulted in optimal combinations of electrodes with minimum
leave-one-error around 15, whereas optimal leave-one-out

error for the original data set was 4. This bootstrap result
confirms that the original LDA optimization was not a result
of multicomparison overfitting.

Multivariate methods such as PCA, ICA and LDA
provide a way of combining the data from multiple electrodes
into a linear combination, and it is instructive to compare
these combinations. Only five PCA components of a total
of 25 are required to account for 95% of the variance
in our data, whereas 20 out of 25 ICA components are
necessary to account for the same amount of variance. This
result was expected, since PCA is designed specifically
for dimensionality reduction, whereas ICA is designed for
unmixing linearly mixed signals.

To compare PCA, ICA and LDA, we first rewrite the data
models for these methods so that the data are factorized into a
product of two matrices in the form

Xm,n = Um,nB−1
n,n

or

Um,n = Xm,nBn,n

where X is an m × n data matrix with n electrodes and m
observations, U is an m × n matrix of linear combinations of
electrode values and B is an n × n set of linear combination
coefficients. The data mean across time was removed prior to
calculating the components. We then calculated the linear
combinations (columns of the matrix B, only one column
for LDA) and plotted the coefficients (weights) of linear
combinations in figure 6 in the spatial arrangement of the
corresponding electrodes (and in the corresponding linear bar
charts).

The first component of PCA reflects the spatial mean of the
voltages from the scalp electrodes. Other PCA components
separate different spatial areas, such as front and back (2nd
component), left and right (3rd component) and center versus
sides and edges (4th component). ICA components and LDA
coefficients do not have such well-defined spatial patterns.

We compared the differences in the separation of the
linear combinations for PCA, ICA and LDA, using data
from tones and phonemes using a t-test. Only the LDA
combination and the 3rd PCA component separated the two
means, but LDA was far more effective (3rd PCA component:
p = 0.0007; LDA: p < 0.0001 and the standard distances
separating the transformed values are much greater for LDA
as seen in the projected means in figure 6). The third PCA
component reflected right from left-sided asymmetry, as has
been noted previously (Kayser et al 1998). Since the third
PCA component separated left and right electrodes, the ability
of this PCA component to separate tones and phonemes is
another demonstration of the laterality of the responses to
tones and phonemes.

Discussion

Although LDA is in common use in analyzing multivariate
data (Schiff et al 2005), we are not aware of full optimization,
using all combinations of electrodes, for neuronal multi-
electrode data as we have described. We have demonstrated
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significantly separated the means significantly, the third PCA component and LDA (3rd PCA component: p = 0.0007; LDA: p < 0.0001).
The third PCA component reflected right from left-sided asymmetry, as has been noted previously (Kayser et al 1998). Nevertheless, the
discrimination power of LDA was substantially more powerful than the other transformations.
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that fully optimized LDA can be highly effective in
separating physiological responses to tones versus phonemes
in individual subjects. Interestingly, the response to elongated
phonemes is mixed among a population of normal children.

LDA shows a very different spatial pattern than
PCA or ICA. In discriminating phonemes from tones,
the associational cortices heavily contribute to the neural
correlates of discrimination. PCA, highlighting the large
asymmetric discrepancies between receptive language sites
in posterior temporal left versus right brain, is not an effective
discrimination tool for individual subjects. Perhaps it is the
disentangling of linear combinations (blind source separation)
that ICA optimizes which is the reason for its poor performance
in this setting—it is in the optimal linear combinations of
electrode data for this task, and presumably for the relevant
underlying neuronal generators, that the best discrimination is
found.

We have shown that the response to elongated phonemes
optimally segregates into responses that are divided between
tone and phonemic responses in the subjects. Such widely
varying responses to these stimuli may help explain variability
in the response to elongated training paradigms for children.
Our findings lead us to the hypothesis that examining
a population of LLI dyslexic children for physiological
responses to elongated phonemes might help identify which
subjects will benefit from such training.

The use of optimal electrodes improves the classification
quality, lowering the dimensionality of the data set. The
electrodes that were optimal were not located directly over
auditory processing areas, where the sensory evoked responses
are largest bilaterally. Our findings suggest that the neural
correlates from other areas are critical for the classification;
indeed, responses from frontal, parietal and central midline
areas were necessary to perform this classification well.
Perhaps the associational regions of cortex, where the actual
perceptions are being processed, are critical signals for us to
quantify discrimination from such perceptual tasks. This said,
we also recognize that our anatomical associations of brain
structures without source localization limits our interpretation.
Studying such subjects with high density EEG or MEG, along
with using anatomically valid head models to estimate current
sources, would be quite valuable.

In this study, we sought an optimal combination of
electrodes to use for discrimination with an entire population
of subjects as a potential screening tool. Nevertheless, our
strategy is applicable to individual subjects, for instance,
in brain–machine interface paradigms, where one seeks
the optimal electrode combination to use for cognitive
discrimination for an individual subject. We will show the
utility of such individual subject optimization in future reports.

Our use of full optimization has become feasible because
the power to perform this computation is now practical
using routine laboratory grade personal computers. Although
many theoretical methods exist to test for discrimination
quality (Flury 1997), data from neuronal experiments will
always deviate from the constraints on distribution and
covariation required for normal theory assumptions. In
contrast, our use of empirical error rates and brute force

full optimization yields electrode combinations from among
millions of possibilities, which are most suitable for a
given situation. Our results find that such discriminators
are powerful enough to work on individual subjects, with
very low error rates. Such an approach is of general
applicability to a wide range of multivariate neuronal data
such as multi-electrode electrical, magnetic encephalography,
optical measurements or functional MRI.
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Appendix. Methods of linear discrimination

The univariate standard distance �Y between two numbers y1

and y2 with respect to random variable Y is defined as (see
Flury (1997))

�Y (y1, y2) = |y1 − y2|
var1/2(Y)

var(Y) = E[(Y − ȳ)2]

ȳ = E[Y].

(A.1)

where E represents expectation. The standard distance may be
interpreted as a one-dimensional Euclidian distance in units
of standard deviation of random variable Y. Generalization to
the p-variate case is accomplished by considering all linear
combinations of p variables, i.e. reducing the problem to
the univariate case. The p-variate standard distance is then
defined as maximum of all univariate standard distances of
linear combinations of p variables or

�Y(y1, y2) = max
a∈�p

a�=�0

|a′(y1 − y2)|
(a′ψa)1/2

ψ = E[(Y − µ)(Y − µ)′]
µ = E[Y],

(A.2)

where a, y1, y2 are p-variate vectors and ψ is the covariance
matrix of the p-variate random variable Y. The maximum of
�Y(y1, y2) is found by using the extended Cauchy–Schwartz
inequality

(u′v)2 � (u′Mu)(v′M−1v) (A.3)

where u, v are p-variate nonzero vectors and M is a positive
definite symmetric matrix. The equality holds when u =
cM−1v or v = cMu, with c being a real number. Maximizing
�Y(y1, y2) is equivalent to maximizing �2

Y(y1, y2). Therefore
by setting u = a, v = y1 − y2 and M = ψ , the maximum is
found at

a = c ψ−1(y1 − y2). (A.4)

Conventionally constant c is set to unity, thus the p-variate
standard distance is equal to

�Y(y1, y2) = [(y1 − y2)
′ψ−1(y1 − y2)]

1/2. (A.5)
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If the means of the random variable Y are µ1 and µ2 in
populations 1 and 2, respectively, and the covariance is equal
in two populations, the linear combination a that maximizes
the standard distance between the two means is defined as the
linear discriminant function (LDF) and is equal to

β = ψ−1(µ1 − µ2). (A.6)

LDF may be viewed as a projection from a p-variate space
to a one-dimensional real line (�p → �) that maximizes the
separation of the two populations on the real line.

In practice, the covariance matrix ψ is estimated as a
weighted sum of the covariance matrices in two populations
or pooled covariance S, i.e.,

ȳj = 1

Nj

Nj∑
i=1

yij ,

Sj = 1

Nj − 1

Nj∑
i=1

(yij−ȳj )(yij − ȳj )
′, j = 1, 2

S = 1

N1 + N2 − 2
[(N1 − 1)S1 + (N2 − 1)S2]

(A.7)

where ȳj and Sj are the estimates of the mean and covariance
matrix in the jth population.

After the calculation of the LDF, we may choose the
midpoint between the means of the projections of the data from
the two populations as a cutoff point. This point corresponds
to a straight line (in the case of bivariate data) or a hyper-plane
(for multivariate data set) in the original variable space.

An alternative approach requires that the data from
the populations follows a normal distribution, that is
Y ∼ Np(µ1, ψ) in population 1 and Y ∼ Np(µ2, ψ) in
population 2.

The probability distribution function (PDF) of the
multivariate normal distribution is equal to

Np(µ,ψ) = (2π)−p/2(det ψ)−1/2

× exp
[− 1

2 (y − µ)′ψ−1(y − µ)
]
, (A.8)

where det(ψ) is the determinant of ψ .
Introducing the notion of prior probabilities π1 and

π2, and the conditional PDF of Y, fj (y), given population
membership j = 1, 2, the posterior probability of being in
population 1 or 2 given data y by the Bayes theorem is
equal to

πjy = πjfj (y)

π1f1(y) + π2f2(y)
. (A.9)

We then shall classify an observation y to population 1, if
π1y > π2y . This condition is equivalent to π1f1(y) > π2f2(y)

or ln π1f1(y)

π2f2(y)
> 0. Since

ln
π1f1(y)

π2f2(y)
= ln

π1

π2
+ β ′

[
y − 1

2
(µ1 + µ2)

]

= α + β ′y (A.10)

it follows that the posterior probability follows logistic
function

π1y = exp(α + β ′y)

1 + exp(α + β ′y)
or ln

π1y

1 − π1y
= α + β ′y.

(A.11)

We introduce a dummy variable

z = ln
π1

π2
+ β ′

[
y − 1

2
(µ1 + µ2)

]
(A.12)

and calculate the posterior probability π1y = ez

1+ez . The
posterior probability for population 2 is found by subtracting
the result from unity.

Efficient matrix codes written in Matlab (The Mathworks,
Natick, MA) for performing the above LDA can be found in
the archived supplementary material from Schiff et al (2005).
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